
CS677: Distributed OS Lec. 06

Distributed and Cluster Scheduling

• Part 1: Multiprocessor scheduling

• Part 2: Distributed Scheduling

• Part 3: Cluster Scheduling

1

CS677: Distributed OS Lec. 06

Part 1: Multiprocessor Scheduling
• Shared memory symmetric multiprocessor (SMP) or multi-core CPU

•Salient features: One or more caches: cache affinity is important

– Semaphores/locks typically implemented as spin-locks: preemption during critical sections

•Multi-core systems: some caches shared (L2,L3); others are not

2

CS677: Distributed OS Lec. 06

Multiprocessor Scheduling
•Central queue

– queue can be a bottleneck;

– utilizes all processors;

– poor cache affinity

•Distributed queue

– imbalance between queues

– load balancing between queue

– good cache affinity

• Exploit cache affinity – try to schedule on the same processor that a process/thread executed last

3

CS677: Distributed OS Lec. 06

Gang Scheduling
• Gang scheduling: schedule parallel application at once on all cores/processors

– Reduces waiting/blocking from message passing/IPC

– Same idea also applies to a cluster setting

• Effect of spin-locks: what happens if preemption occurs in the middle of a critical
section?

– Preempt entire application (co-scheduling)

– Raise priority so preemption does not occur (smart scheduling)

– Both of the above

4

CS677: Distributed OS Lec. 06

Part 2: Distributed Scheduling
• Distributed scheduling arose in the workstation era

• Workstation on every desk, many idle

–Harness idle cycles on workstations

–Scheduling in a Network of Workstations (NoW)

• User submits job to local machine

• OS schedules locally if load is low

• OS schedules remotely on an idle machine otherwise

• Distributed system with N workstations

–To understand benefits of the approach:

– Model each w/s as identical, independent M/M/1 systems

– Utilization u, P(system idle)=1-u

5

CS677: Distributed OS Lec. 06

Harnessing Idle Cycles in NoW
• What is the probability that at least one system is idle and one job is waiting?

• High utilization => little benefit

• Low utilization => rarely job waiting

• Probability high for moderate system utilization

–Potential for performance improvement

–Distributed scheduling (aka load balancing) useful

• What is the performance metric?

–Mean response time

• What is the measure of load?

–Must be easy to measure and reflect performance improvement

–Queue lengths at CPU, CPU utilization

• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance

–Job floats around and load oscillates

6

CS677: Distributed OS Lec. 06

Components
• Transfer policy: when to transfer a process?

– Threshold-based policies are common and easy

• Selection policy: which process to transfer?

– Prefer new processes

– Transfer cost should be small compared to execution cost

• Select processes with long execution times

• Location policy: where to transfer the process?

– Polling, random, nearest neighbor

• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven [periodic], state-change-driven [send update if load
changes]

7

CS677: Distributed OS Lec. 06

Sender-initiated Policy
• Transfer policy

• Selection policy: newly arrived process

• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers

– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job

– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

8

CS677: Distributed OS Lec. 06

Receiver-initiated Policy
• Transfer policy: If departing process causes load < T, find a process from

elsewhere

• Selection policy: newly arrived or partially executed process

• Location policy:

– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing

– Shortest: poll n nodes in parallel, choose node with heaviest load above T

9

CS677: Distributed OS Lec. 06

Symmetric Policies
• Nodes act as both senders and receivers: combine previous two policies without change

– Use average load as threshold

• Improved symmetric policy: exploit polling information

– Two thresholds: LT, UT, LT <= UT

– Maintain sender, receiver and OK nodes using polling info

– Sender: poll first node on receiver list …

– Receiver: poll first node on sender list …

10

CS677: Distributed OS Lec. 06

Case Study 1: V-System (Stanford)

• State-change driven information policy

– Significant change in CPU/memory utilization is broadcast to all other nodes

• M least loaded nodes are receivers, others are senders

• Sender-initiated with new job selection policy

• Location policy: probe random receiver from M, if still receiver, transfer job,
else try another

11

CS677: Distributed OS Lec. 06

Case study 2: Sprite (Berkeley)
• Workstation environment => owner is king!

• Centralized information policy: coordinator keeps info

– State-change driven information policy

– Receiver: workstation with no keyboard/mouse activity for 30 seconds and # active processes <
number of processors

• Selection policy: manually done by user => workstation becomes sender

• Location policy: sender queries coordinator

• WS with foreign process becomes sender if user becomes active: selection
policy=> home workstation

12

CS677: Distributed OS Lec. 06

Sprite (contd)
• Sprite process migration is a building block for scheduling on to remote machines

– Facilitated by the Sprite file system

– State transfer

• Swap everything out

• Send page tables and file descriptors to receiver

• Demand page process in

• Only dependencies are communication-related

– Redirect communication from home WS to receiver

13

CS677: Distributed OS Lec. 06

Case study 3: Condor
• Condor: use idle cycles on workstations in a LAN

• Active project at U. Wisconsin, can use even today

• Used to run large batch jobs, long simulations

• Idle machines contact condor for work

• Condor assigns a waiting job

• User returns to workstation => suspend job, migrate

• supports process migration

• Flexible job scheduling policies

14

CS677: Distributed OS Lec. 06

Case Study 4: Volunteer Computing
• Modern way to harness idle cycles in PCs over WAN

• Harness compute cycles of thousands of PCs on the Internet

• Volunteer Computing

• PCs owned by different individuals

• Donate CPU cycles/storage when not in use (pool resouces)

• Idling machine contacts coordinator for work

• Coordinator: partition large parallel app into small tasks

• Assign compute/storage tasks to PCs

• Examples: Seti@home, BOINC, P2P backups

• Volunteer computing

15

CS677: Distributed OS Lec. 06

Part 3: Cluster Scheduling
• Scheduling tasks on to a cluster of servers

• Machines are cheap, no need to rely on idle PCs anymore

• Use a cluster of powerful servers to run tasks

• User requests sent to the cluster (rather than a idle PC)

• Interactive applications

• Web servers use a cluster of servers

• “Job” is a single HTTP request; optimize for response time

• Batch applications

• Job is a long running computation; optimize for throughput

16

CS677: Distributed OS Lec. 06

Typical Cluster Scheduler
• Dispatcher node assigns queued requests to worker nodes as per a

scheduling policy

17

incoming
requests

dispatcher
node

worker
nodes

queue

scheduling
policy

cluster

CS677: Distributed OS Lec. 06

Scheduling in Clustered Web Servers
• Distributed scheduling in large web servers

• N nodes, one node acts as load balancer/dispatcher

• other nodes are replica worker nodes (“server pool”)

• Requests arrive into queue at load balancer node

• Dispatcher schedules request onto an worker node

• How to decide which node to choose?

• Scheduling policies: least loaded, round robin

• Weighted round robin when servers are heterogeneous

• Session-level versus request-level load balancing

• Web server maintain session state for client (e.g., shopping cart)

• Perform load balancing at session granularity

• All requests from client session sent to same worker

18

CS677: Distributed OS Lec. 06

Scheduling Batch Jobs
• Batch jobs are non-interactive tasks

• ML training, data processing tasks, simulations
• Batch scheduling in a server cluster

• Users submit job to a queue, dispatcher schedules jobs
• SLURM: Simple Linux Utility for Resource Management

• Linux batch scheduler; runs on > 50% supercomputers

• Nodes partitioned into groups; each group has job queue

• Specify size, time limits, user groups for each queue

• Example: short queue, long queue

• Many policies: FCFS, priority, gang scheduling

• Exclusive or shared access to nodes (e.g., MPI jobs)
• Others: SunGridEngine, DQS, Load Leveler, IBM LSF

19

CS677: Distributed OS Lec. 06

Mesos Scheduler
• Mesos: Cluster manager and scheduler for multiple frameworks

• Cluster typically runs multiple frameworks: batch, Spark, …

• Statically partition cluster, each managed by a scheduler

• Mesos: fine-grain server sharing between frameworks
• Two-level approach: allocate resources to frameworks, framework allocates resources to tasks
• Resource Offers: bundle of resources offered to framework

• Framework can accept or reject offer

• Higher-level policy (e.g., fair share) governs allocation; resource offers used to offer resources

• Framework-specific scheduling policy allocates to tasks

• Framework can not ask for resources; only accept/reject resource offers (Paper shows this is
sufficient).

20

CS677: Distributed OS Lec. 06

Mesos Scheduler
• Four components: coordinator, Mesos

worker, framework scheduler, executor on
server nodes

• Step 1: worker node (6 core, 6GB) becomes
idle, reports to coordinator

• Step 2: Coordinator invokes policy, decides to
allocate to Framework 1. Sends resource offer

• Step 3: Framework accepts, scheduler assigns
task 1 (2C, 2GB) and task 2 (2C, 3GB)

• Step 4: Coordinator sends tasks to executor on
node

• Unused resources (2C, 1GB): new offer

21

CS677: Distributed OS Lec. 06

Borg Scheduler
• Google’s cluster scheduler: scheduling at very large scales

• run hundreds of thousands of concurrent jobs onto tens of thousands of server

• Borg’s ideas later influenced kubernates

• Design Goals:

• hide details of resource management and failures from apps

• Operate with high reliability (manages gmail, web search, ..)

• Scale to very large clusters

• Designed to run two classes: interactive and batch

• Long running interactive jobs (prod job) given priority

• Batch jobs (non-prod jobs) given lower priority

• % of interactive and batch jobs will vary over time

22

CS677: Distributed OS Lec. 06

Borg Scheduler
• Cell: group of machines in a cluster (~10K servers)
• Borg: matches jobs to cells

• jobs specify resource needs

• Borg finds a cell/machine to run a job

• job needs can change (e.g., ask for more)

• Use resource reservations (“alloc”)

• alloc set: reservations across machines

• Schedule job onto alloc set

• Preemption: higher priority job can preempt a lower priority job if there are insufficient resources

• Borg Master coördinator: replicated 5 times, uses paxos

• Priority queue to schedule jobs: uses best-fit, worst-fit

23

CS677: Distributed OS Lec. 06

S

• Virtualization: extend or replace an existing interface to mimic the behavior of
another system.

– Introduced in 1970s: run legacy software on newer mainframe hardware

• Handle platform diversity by running apps in VMs

– Portability and flexibility

24

CS677: Distributed OS Lec. 06

Types of Interfaces

• Different types of interfaces

– Assembly instructions

– System calls

– APIs

• Depending on what is replaced /mimiced, we obtain different forms of virtualization

25

CS677: Distributed OS Lec. 06

Types of Virtualization
• Emulation

– VM emulates/simulates complete hardware

– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU

• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified guest OS to be run in
isolation

• Same hardware CPU

– IBM VM family, VMWare Workstation, Parallels, VirtualBox

26

CS677: Distributed OS Lec. 06

Types of virtualization
• Para-virtualization

– VM does not simulate hardware

– Use special API that a modified guest OS must use

– Hypercalls trapped by the Hypervisor and serviced

– Xen, VMWare ESX Server

• OS-level virtualization

– OS allows multiple secure virtual servers to be run

– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS

– Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker

• Application level virtualization

– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts

– JVM, Rosetta on Mac (also emulation), WINE

27

CS677: Distributed OS Lec. 06

Types of Hypervisors

• Type 1: hypervisor runs on “bare metal”

• Type 2: hypervisor runs on a host OS

– Guest OS runs inside hypervisor

• Both VM types act like real hardware

28

CS677: Distributed OS Lec. 06

How Virtualization works?
• CPU supports kernel and user mode (ring0, ring3)

– Set of instructions that can only be executed in kernel mode

• I/O, change MMU settings etc -- sensitive instructions

– Privileged instructions: cause a trap when executed in kernel mode

• Result: type 1 virtualization feasible if sensitive instruction subset of privileged instructions

• Intel 386: ignores sensitive instructions in user mode

– Can not support type 1 virtualization

• Recent Intel/AMD CPUs have hardware support

– Intel VT, AMD SVM

• Create containers where a VM and guest can run

• Hypervisor uses hardware bitmap to specify which inst should trap

• Sensitive inst in guest traps to hypervisor

29

CS677: Distributed OS Lec. 06

Type 1 hypervisor

• Unmodified OS is running in user mode (or ring 1)

– But it thinks it is running in kernel mode (virtual kernel mode)

– privileged instructions trap; sensitive inst-> use VT to trap

– Hypervisor is the “real kernel”

• Upon trap, executes privileged operations

• Or emulates what the hardware would do

30

CS677: Distributed OS Lec. 06

Type 2 Hypervisor
• VMWare example

– Upon loading program: scans code for basic blocks

– If sensitive instructions, replace by Vmware procedure

• Binary translation

– Cache modified basic block in VMWare cache

• Execute; load next basic block etc.

• Type 2 hypervisors work without VT support

– Sensitive instructions replaced by procedures that emulate them.

31

CS677: Distributed OS Lec. 06

Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS

• Paravirtualization: modify OS kernel to replace all sensitive instructions with hypercalls

– OS behaves like a user program making system calls

– Hypervisor executes the privileged operation invoked by hypercall.

32

CS677: Distributed OS Lec. 06

Virtual machine Interface

• Standardize the VM interface so kernel can run on bare hardware or any
hypervisor

33

CS677: Distributed OS Lec. 06

Memory virtualization
• OS manages page tables

– Create new pagetable is sensitive -> traps to hypervisor

• hypervisor manages multiple OS

– Need a second shadow page table

– OS: VM virtual pages to VM’s physical pages

– Hypervisor maps to actual page in shadow page table

– Two level mapping

– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault

• Paravirtualized - use hypercalls to inform

34

CS677: Distributed OS Lec. 06

I/O Virtualization
• Each guest OS thinks it “owns” the disk

• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to the guest OS

• Hypervisor converts block # to file offset for I/O

– DMA need physical addresses

• Hypervisor needs to translate

35

CS677: Distributed OS Lec. 06

Examples

• Application-level virtualization: “process virtual machine”

• VMM /hypervisor

36

CS677: Distributed OS Lec. 06

Virtual Appliances & Multi-Core
• Virtual appliance: pre-configured VM with OS/ apps pre-installed

– Just download and run (no need to install/configure)

– Software distribution using appliances

• Multi-core CPUs

– Run multiple VMs on multi-core systems

– Each VM assigned one or more vCPU

– Mapping from vCPUs to physical CPUs

• Today: Virtual appliances have evolved into docker containers

37

CS677: Distributed OS Lec. 06

Use of Virtualization Today
• Data centers:

• server consolidation: pack multiple virtual servers onto a smaller number of physical server

• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers

• cloud provider controls physical machines and mapping of virtual servers to physical hosts

• User gets root access on virtual server

• Desktop computing:

• Multi-platform software development

• Testing machines

• Run apps from another platform

38

CS677: Distributed OS Lec. 06

Case Study: PlanetLab

• Distributed cluster across universities

• Used for experimental research by students and faculty in networking and distributed systems

• Uses a virtualized architecture

• Linux Vservers

• Node manager per machine

• Obtain a “slice” for an experiment: slice creation service

39

