Distributed and Cluster Scheduling

* Part 1: Multiprocessor scheduling
* Part 2: Distributed Scheduling

* Part 3: Cluster Scheduling

University of
Massachusetts | CS677: Distributed OS
Amberst

Lec. 06

Part 1: Multiprocessor Scheduling

e Shared memory symmetric multiprocessor (SMP) or multi-core CPU

processor
5 © @ ©
cache {L1)
I I |
I | |

2nd level
cache {L2)

shared
memory

eSalient features: One or more caches: cache affinity is important

— Semaphores/locks typically implemented as spin-locks: preemption during critical sections

*Multi-core systems: some caches shared (L2,L3); others are not

University of
Massachusetts | CS677: Distributed OS
Amberst

Lec. 06

Multiprocessor Scheduling

processors

*Central queue \
In memory /O

ready Q

—queue can be a bottleneck; —] v s

—utilizes all processors; \O
schedule

work

— poor cache affinity

*Distributed queue
—imbalance between queues —_—

—load balancing between queue .

—good cache affinity > :}<g

* Exploit cache affinity — try to schedule on the same processor that a process/thread executed last

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Gang Scheduling

* Gang scheduling: schedule parallel application at once on all cores/processors
— Reduces waiting/blocking from message passing/IPC

— Same idea also applies to a cluster setting

» Effect of spin-locks: what happens if preemption occurs in the middle of a critical
section?

— Preempt entire application (co-scheduling)
— Raise priority so preemption does not occur (smart scheduling)
— Both of the above

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Part 2: Distributed Scheduling

* Distributed scheduling arose in the workstation era
* Workstation on every desk, many idle
—Harness idle cycles on workstations
—Scheduling in a Network of Workstations (NoW)
* User submits job to local machine
* OS schedules locally if load is low
* OS schedules remotely on an idle machine otherwise
¢ Distributed system with N workstations
—To understand benefits of the approach:
— Model each w/s as identical, independent M/M/1 systems
— Utilization u, P(system idle)=1-u
University of

Massachusetts | CS677: Distributed OS
Amberst

Harnessing Idle Cycles in NoW

High utilization => little benefit

Low utilization => rarely job waiting

Probability high for moderate system utilization
—Potential for performance improvement

—Distributed scheduling (aka load balancing) useful

What is the performance metric?

—Mean response time

What is the measure of load?
—Must be easy to measure and reflect performance improvement

—Queue lengths at CPU, CPU utilization

Stability: A>u => instability, A, +A,<u,+u,=>load balance
—Job floats around and load oscillates
University of

Massachusetts | CS677: Distributed OS
Amberst

What is the probability that at least one system is idle and one job is waiting?

Lec. 06

Lec. 06

Components

o Transfer policy: when to transfer a process?
— Threshold-based policies are common and easy
e Selection policy: which process to transfer?
— Prefer new processes
— Transfer cost should be small compared to execution cost
» Select processes with long execution times
¢ Location policy: where to transfer the process?
— Polling, random, nearest neighbor

¢ [nformation policy: when and from where?

— Demand driven [only if sender/receiver], time-driven [periodic], state-change-driven [send update if load

changes]
University of
Massachusetts | CS677: Distributed OS

Amberst

Sender-initiated Policy

» Transfer policy

ENO
process

N>T

try to xter
e Selection policy: newly arrived process
* Location policy: three variations
— Random: may generate lots of transfers => limit max transfers
— Threshold: probe n nodes sequentially
* Transfer to first node below threshold, if none, keep job
— Shortest. poll N, nodes in parallel

¢ Choose least loaded node below T

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 06

Lec. 06

Receiver-initiated Policy

e Transfer policy: If departing process causes load < 7, find a process from
elsewhere

» Selection policy: newly arrived or partially executed process
* Location policy:
— Threshold: probe up to N, other nodes sequentially
* Transfer from first one above threshold, if none, do nothing

— Shortest: poll » nodes in parallel, choose node with heaviest load above T

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Symmetric Policies

* Nodes act as both senders and receivers: combine previous two policies without change
— Use average load as threshold T .
initiated

----avg. load ---

recvr
initiated

* Improved symmetric policy: exploit polling information
— Two thresholds: LT, UT, LT <= UT

— Maintain sender, receiver and OK nodes using polling info

— Sender: poll first node on receiver list ... uT sender
— Receiver: poll first node on sender list ... r OK
recvr
University of

Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Case Study 1: V-System (Stanford)

State-change driven information policy

— Significant change in CPU/memory utilization is broadcast to all other nodes

M least loaded nodes are receivers, others are senders

Sender-initiated with new job selection policy

Location policy: probe random receiver from M, if still receiver, transfer job,
else try another

University of
Massachusetts | CS677: Distributed OS Lec.06 1
Ambherst

Case study 2: Sprite (Berkeley)

* Workstation environment => owner is king!
* Centralized information policy: coordinator keeps info
— State-change driven information policy

— Receiver: workstation with no keyboard/mouse activity for 30 seconds and # active processes <
number of processors

* Selection policy: manually done by user => workstation becomes sender
¢ Location policy: sender queries coordinator

* WS with foreign process becomes sender if user becomes active: selection
policy=> home workstation

University of
Massachusetts | CS677: Distributed OS Lec.06 12
Ambherst

Sprite (contd)

e Sprite process migration is a building block for scheduling on to remote machines
— Facilitated by the Sprite file system
— State transfer
* Swap everything out
* Send page tables and file descriptors to receiver
* Demand page process in
* Only dependencies are communication-related

— Redirect communication from home WS to receiver

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Case study 3: Condor

e Condor: use idle cycles on workstations in a LAN

* Active project at U. Wisconsin, can use even today

* Used to run large batch jobs, long simulations

* |dle machines contact condor for work

» Condor assigns a waiting job

e User returns to workstation => suspend job, migrate
¢ supports process migration

* Flexible job scheduling policies

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

14

Case Study 4: Volunteer Computing

* Modern way to harness idle cycles in PCs over WAN
* Harness compute cycles of thousands of PCs on the Internet
* Volunteer Computing
* PCs owned by different individuals
* Donate CPU cycles/storage when not in use (pool resouces)
¢ Idling machine contacts coordinator for work
» Coordinator: partition large parallel app into small tasks
» Assign compute/storage tasks to PCs
¢ Examples: Seti@home, BOINC, P2P backups

* Volunteer computing

University of
Massachusetts | CS677: Distributed OS Lec.06 15
Ambherst

Part 3: Cluster Scheduling

¢ Scheduling tasks on to a cluster of servers
* Machines are cheap, no need to rely on idle PCs anymore
¢ Use a cluster of powerful servers to run tasks

¢ User requests sent to the cluster (rather than a idle PC)

¢ Interactive applications
* Web servers use a cluster of servers
e “Job” is a single HTTP request; optimize for response time
¢ Batch applications
* Job is a long running computation; optimize for throughput
University of

Massachusetts | CS677: Distributed OS Lec.06 16
Ambherst

Typical Cluster Scheduler

¢ Dispatcher node assigns queued requests to worker nodes as per a

scheduling policy

cluster

dispatcher
node

incoming |, E
| >

req uests
sct eduhng \

policy

worker
nodes

University of
Massachusetts | CS677: Distributed OS
Amberst

Scheduling in Clustered Web Servers

» Distributed scheduling in large web servers
* N nodes, one node acts as load balancer/dispatcher
¢ other nodes are replica worker nodes (“server pool”)
* Requests arrive into queue at load balancer node
* Dispatcher schedules request onto an worker node
* How to decide which node to choose?
¢ Scheduling policies: least loaded, round robin
* Weighted round robin when servers are heterogeneous
¢ Session-level versus request-level load balancing
* Web server maintain session state for client (e.g., shopping cart)
¢ Perform load balancing at session granularity
* All requests from client session sent to same worker
University of

Massachusetts | CS677: Distributed OS
Amberst

Lec. 06

Lec. 06

17

18

Scheduling Batch Jobs

¢ Batch jobs are non-interactive tasks

¢ ML training, data processing tasks, simulations
¢ Batch scheduling in a server cluster

* Users submit job to a queue, dispatcher schedules jobs
* SLURM: Simple Linux Utility for Resource Management

¢ Linux batch scheduler; runs on > 50% supercomputers
* Nodes partitioned into groups; each group has job queue
* Specify size, time limits, user groups for each queue
* Example: short queue, long queue
¢ Many policies: FCFS, priority, gang scheduling
¢ Exclusive or shared access to nodes (e.g., MPI jobs)

» Others: SunGridEngine, DQS, Load Leveler, IBM LSF

University of
Massachusetts | CS677: Distributed OS Lec.06 19
Ambherst

Mesos Scheduler

e Mesos: Cluster manager and scheduler for multiple frameworks
e Cluster typically runs multiple frameworks: batch, Spark, ...
» Statically partition cluster, each managed by a scheduler

* Mesos: fine-grain server sharing between frameworks
e Two-level approach: allocate resources to frameworks, framework allocates resources to tasks
* Resource Offers: bundle of resources offered to framework

e Framework can accept or reject offer
» Higher-level policy (e.g., fair share) governs allocation; resource offers used to offer resources
¢ Framework-specific scheduling policy allocates to tasks

e Framework can not ask for resources; only accept/reject resource offers (Paper shows this is
sufficient).

University of
Massachusetts | CS677: Distributed OS Lec.06 20
Ambherst

Mesos Scheduler

University of
Massachusetts

Amberst

Four components: coordinator, Mesos
worker, framework scheduler, executor on
server nodes

Step 1: worker node (6 core, 6GB) becomes
idle, reports to coordinator

Step 2: Coordinator invokes policy, decides to
allocate to Framework 1. Sends resource offer

Step 3: Framework accepts, scheduler assigns
task 1 (2C, 2GB) and task 2 (2C, 3GB)

Step 4: Coordinator sends tasks to executor on
node

Unused resources (2C, 1GB): new offer

CS677: Distributed OS

Borg Scheduler

¢ Google’s cluster scheduler: scheduling at very large scales

University of
Massachusetts

Amberst

Hadoop MPI ZooKeeper
scheduler scheduler quorum

»

A

Mesos slave

Mesos slave

Mesos slave

{ | Standby |
¢ |__master

Hadoop
executor

MPI
executor

Hadoop

MPI

[task]] [tosk]
Framework 1 Framework 2
Job1 [Job2
| Fw scheduler | |

Allocation | Mesos

module master
<twi, task1, 20pu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

Slave 2
Executor

[Tasic][Tesk |

¢ run hundreds of thousands of concurrent jobs onto tens of thousands of server

¢ Borg’s ideas later influenced kubernates

Design Goals:

¢ hide details of resource management and failures from apps
¢ Operate with high reliability (manages gmail, web search, ..)
¢ Scale to very large clusters

Designed to run two classes: interactive and batch

¢ Long running interactive jobs (prod job) given priority

¢ Batch jobs (non-prod jobs) given lower priority

* % of interactive and batch jobs will vary over time

CS677: Distributed OS

Lec. 06

Lec. 06

21

22

Borg Scheduler

¢ Cell: group of machines in a cluster (~10K servers)
¢ Borg: matches jobs to cells confg
borgcfg][

‘command-ine]] [o —]]

tools

* jobs specify resource needs

¢ Borg finds a cell/machine to run a job

s
(Paxos)
* job needs can change (e.g., ask for more) ik shard
. 7\
* Use resource reservations (“alloc”) . =
[Borglet ||| [[Borgtet]{|{{{[Boratet 1| |||{[Borglet]|
« alloc set: reservations across machines :E]DI) D ::CJI H o
— [}

¢ Schedule job onto alloc set
* Preemption: higher priority job can preempt a lower priority job if there are insufficient resources
* Borg Master codrdinator: replicated 5 times, uses paxos
¢ Priority queue to schedule jobs: uses best-fit, worst-fit
University of

Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Program

Program Interface A

Implementation of
mimicking A on B

Interface A
............................ Interface B

Hardware/software system A Hardware/software system B

(a) (b)

* Virtualization: extend or replace an existing interface to mimic the behavior of
another system.

— Introduced in 1970s: run legacy software on newer mainframe hardware
* Handle platform diversity by running apps in VMs
— Portability and flexibility

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

23

24

Types of Interfaces

. . Application
Library functions ‘ PP
y —L

Library
System calls
Privileged Operating system General
instructions ~—~% T ‘

instructions

Hardware

* Different types of interfaces
— Assembly instructions
— System calls

— APIs

* Depending on what is replaced /mimiced, we obtain different forms of virtualization

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

Types of Virtualization

e Emulation
— VM emulates/simulates complete hardware
— Unmodified guest OS for a different PC can be run
* Bochs, VirtualPC for Mac, QEMU
* Full/native Virtualization

— VM simulates “enough” hardware to allow an unmodified guest OS to be run in
isolation

e Same hardware CPU
— IBM VM family, VMWare Workstation, Parallels, VirtualBox

University of
Massachusetts | CS677: Distributed OS Lec. 06
Amberst

25

26

Types of virtualization

* Para-virtualization
— VM does not simulate hardware
— Use special API that a modified guest OS must use
— Hypercalls trapped by the Hypervisor and serviced
— Xen, VMWare ESX Server
¢ OS-level virtualization
— OS allows multiple secure virtual servers to be run
— Guest OS is the same as the host OS, but appears isolated
* apps see an isolated OS
— Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker
¢ Application level virtualization
— Application is gives its own copy of components that are not shared
* (E.g., own registry files, global objects) - VE prevents conflicts
— JVM, Rosetta on Mac (also emulation), WINE
University of

Massachusetts | CS677: Distributed OS
Ambherst

Types of Hypervisors

Guest OS process

Excel Word Mplayer Apollon O O Q grc:)sctecs)ss
Guest OS
—VN_in—d;v_v; Type 2 hypervisor O O
Type 1 hypervisor Host operating system
(a) (b)

e Type 1: hypervisor runs on “bare metal”

e Type 2: hypervisor runs on a host OS
— Guest OS runs inside hypervisor

* Both VM types act like real hardware

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 06

Lec. 06

27

28

How Virtualization works?

¢ CPU supports kernel and user mode (ring0, ring3)
— Set of instructions that can only be executed in kernel mode
* 1/0, change MMU settings etc -- sensitive instructions
— Privileged instructions: cause a trap when executed in kernel mode
* Result: type 1 virtualization feasible if sensitive instruction subset of privileged instructions
¢ Intel 386: ignores sensitive instructions in user mode
— Can not support type 1 virtualization
* Recent Inte/AMD CPUs have hardware support
— Intel VT, AMD SVM
* Create containers where a VM and guest can run
* Hypervisor uses hardware bitmap to specify which inst should trap

* Sensitive inst in guest traps to hypervisor

University of
Massachusetts | CS677: Distributed OS Lec. 06
Ambherst

Type 1 hypervisor

O O } Virtual user mode
Virtual User

machine mode

Guest operating system Virtual kernel mode

Kemel

Type 1 hypervisor) Trap on privileged instruction }mode

Hardware

¢ Unmodified OS is running in user mode (or ring 1)
— But it thinks it is running in kernel mode (virtual kernel mode)
— privileged instructions trap; sensitive inst-> use VT to trap
— Hypervisor is the “real kernel”
¢ Upon trap, executes privileged operations

¢ Or emulates what the hardware would do

University of
Massachusetts | CS677: Distributed OS Lec. 06
Ambherst

29

30

Type 2 Hypervisor

* VMWare example
— Upon loading program: scans code for basic blocks
— If sensitive instructions, replace by Vmware procedure
e Binary translation
— Cache modified basic block in VMWare cache
* Execute; load next basic block etc.
» Type 2 hypervisors work without VT support

— Sensitive instructions replaced by procedures that emulate them.

University of
Massachusetts | CS677: Distributed OS

Lec. 06
Amberst

Paravirtualization

True virtualization Paravirtualization

: : Trap due : : Trap due

to sensitive ;
Unmodified Windows \\/ instruction Modified Linux \/ :;)alfl\yperwsor

T
Type 1 hypervisor »2 i Microkernel

Hardware

e Both type 1 and 2 hypervisors work on unmodified OS
e Paravirtualization: modify OS kernel to replace all sensitive instructions with hypercalls
— OS behaves like a user program making system calls

— Hypervisor executes the privileged operation invoked by hypercall.

University of
Massachusetts | CS677: Distributed OS

Lec. 06
Amberst

31

32

Virtual machine Interface

» Standardize the VM interface so kernel can run on bare hardware or any

O O

O O

O O

VMI Linux

VMI Linux

VMI Linux

VMIL /HWinterface lib.

VMIL to Vmware lib.

VMIL to Xen library

r call

hypervisor

University of
Massachusetts
Amberst

CS677: Distributed OS

Sensitive i -
instruction i Hypervisor call l Hyperviso
(:I)\(Io\e}cuted by VMware Xen
Hardware Hardware Hardware
@ (b) ©

Memory virtualization

* OS manages page tables

— Create new pagetable is sensitive -> traps to hypervisor

* hypervisor manages multiple OS

— Need a second shadow page table

— OS: VM virtual pages to VM’s physical pages

— Hypervisor maps to actual page in shadow page table

— Two level mapping

— Need to catch changes to page table (not privileged)

¢ Change PT to read-only - page fault

¢ Paravirtualized - use hypercalls to inform

University of
Massachusetts
Amberst

CS677: Distributed OS

Lec. 06

Lec. 06

33

34

I/O Virtualization
e Each guest OS thinks it “owns” the disk
* Hypervisor creates “virtual disks”
— Large empty files on the physical disk that appear as “disks” to the guest OS
* Hypervisor converts block # to file offset for /0O
— DMA need physical addresses

* Hypervisor needs to translate

University of
Massachusetts | CS677: Distributed OS Lec.06 35
Ambherst
[
[: l
‘ Application Applications =,
=
m
I T T) m
Runtime system Operating system
o ti N T - I
erating system . K .
P sy Virtual machine monitor
T 3 .
Hardware ‘ T | — I
Hardware
(a)

(b)

* Application-level virtualization: “process virtual machine”

* VMM /hypervisor

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 06 36

Virtual Appliances & Multi-Core

« Virtual appliance: pre-configured VM with OS/ apps pre-installed
— Just download and run (no need to install/configure)
— Software distribution using appliances
e Multi-core CPUs
— Run multiple VMs on multi-core systems
— Each VM assigned one or more vCPU

— Mapping from vCPUs to physical CPUs

e Today: Virtual appliances have evolved into docker containers

University of
Massachusetts | CS677: Distributed OS

Lec. 06 37
Amberst

Use of Virtualization Today

* Data centers:
« server consolidation: pack multiple virtual servers onto a smaller number of physical server
¢ saves hardware costs, power and cooling costs
¢ Cloud computing: rent virtual servers
* cloud provider controls physical machines and mapping of virtual servers to physical hosts
» User gets root access on virtual server
* Desktop computing:
 Multi-platform software development
* Testing machines

* Run apps from another platform

University of
Massachusetts | CS677: Distributed OS

Lec. 06 38
Amberst

Case Study: PlanetLab

User-assigned Priviliged management
virtual machines virtual machines
—

5590014
$S8001d
$S800.d
$89001d
$89001d
$§9001d
$50001d
$89001d
$59001d
$890014

Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

« Distributed cluster across universities
* Used for experimental research by students and faculty in networking and distributed systems
* Uses a virtualized architecture
e Linux Vservers
* Node manager per machine
* Obtain a “slice” for an experiment: slice creation service
University of e 05 3

Massachusetts | CS677: Distributed OS
Amberst

